A Simple Semi-automated Proof Assistant for First-order
Modal Logics

Tomer Libal

The American University of Paris, France
tlibal®@aup.edu

Abstract

Most theorem provers and proof assistants are written in imperative or functional
programming languages. Recently, the claim that higher-order logic programming languages
might be better suited for this task was revisited and a new interpreter, as well as new proof
assistants based on it, were introduced. In this paper I follow these results and describe a
concise implementation of a prototype for a semi-automated proof assistant for first-order
modal logics. The aim of this paper is to encourage the development of personal proof
assistants and semi-automated provers for a variety of modal logics.

1 Introduction

Proof assistants are sophisticated systems which have helped users to prove a wide range of
mathematical theorems [8, 20, 21, 23] and program properties [3, 11, 25]. Nevertheless, these
tools normally require knowledge of computational logic, mathematical skills and experience
with the chosen tool. In addition, these tools are based on specific theories, such as intuitionistic
type theory for Coq [1] or higher-order logic for Isabelle/HOL [35] and HOL Light [24], which
might not be easily applicable to other domains, such as to first-order modal logics.

Benzmiiller and Wolzenlogel Paleo have shown that by embedding higher-order modal logics
in Coq [4], one can interactively search for proofs. A general description of their work with
respect also to other proof assistants is described in [6]. Such an approach takes advantage of the
full power of a leading proof assistant and is also clearly general and applicable to other domains.
Possible downsides are the Coq expertise required, the required knowledge in intuistionistic type
theory for extensions as well as the fact that despite being shallow, an embedding is still an
indirect way of communicating with the target calculus - modal logic in our case.

Except the above mentioned works, very little progress has been made towards using
proof assistants for modal logics. One reason for that is that proof assistants are non-trivial
software requiring a high level of programming skills. Therefore, the majority of proof assistants
are implemented in functional programming languages which facilitate their creation. Still,
programmers of any proof assistant must handle a variety of common but non-trivial tasks such
as proof search, unification, substitutions and many others. Therefore, it is not surprising that
one of the leading theorem provers for first-order modal logics is MleanCoP, which is written
in Prolog [36]. Prolog gives programmers proof search and other operations for free and allow
for a more concise and trusted code. Still, the fact that Prolog is based on first-order logic
necessarily means that it is not suitable for a shallow embedding of systems whose meta-theory
requires higher-order logic. Among such systems are first-order classical and modal logics. Such
embeddings would require a programming language which supports higher-order features, such
as binding and higher-order unification.

Advocates of higher-order logic programming languages, such as Felty and Miller [18] have
argued that these languages are very suited for the creation of proof assistants [17, 30] and proof
checkers [29]. Higher-order logic programming languages provide a native support for all of the

A Simple Proof Assistant Libal

required tasks just mentioned and offer, therefore, not only a much easier coding experience but
also an increased level of trust in its correctness. More recently, Sacerdoti-Coen, Tassi, Dunchev
and Ferruccio have developed an efficient interpreter [16] for the higher-order logic programming
language AProlog [31] and used it for the creation of several proof assistants [15, 22, 38]. They
showed that using higher-order logic programming greatly reduces the size of the program.
While there are many similarities between their work and the current paper, I am interested in
utilizing logic programming for the creation of many, simple and personalized proof assistants
and not for the implementation of full scale, general and complex ones.

Another complexity arising in the creation of proof assistants is the need to interface between
the users and the tool. The calculi at the core of most proof assistants do not support, out of
the box, interactive proof search. Focused sequent calculi [2] partially solve this problem by
separating proof search into two different modes. One of the modes, which can be executed
fully automatically, can be applied eagerly in order to save the user from tasks not requiring her
attention. The assistant then switches to the second mode when user interaction is required.

The above discussion identifies two issues. First, when one wants to use a proof assistant for
modal logics, she needs to have both a good proficiency with the current ones and the ability to
embed her logic in their theories. Second, if she chooses to implement her own, the task is far
from being simple. In this paper I want to present a third alternative — implement your own
proof assistant by following a precise recipe. As we will see, the advantages of this approach
are the simplicity of the process — I exemplify that by the implementation of a proof assistant
for first-order modal logic which consists of less than 200 lines of code. There are also several
disadvantages, the most important of which is the need to have a proof calculus based on focused
sequents. Another disadvantage is the required AProlog skill. It should be noted though, that
the vast majority of the code requires only proficiency in Prolog.

The technique demonstrated in this paper, of using a focused calculus together with higher-
order logic programming, is based on the work by Miller and his group towards proof certification
[29, 13, 12]. Given that proof certification can be considered as a restriction of interactive
proof search where the interaction is done between the proof certificate and the program, this
paper attempts to generalize the approach to arbitrary interaction including the interaction
between a user and a program. At the same time, using higher-order logic programming
towards the creation of proof assistants is one of the purposes of the group behind the ELPI
interpreter [15, 22, 38]. Their work is focused on the implementation and extension of fully
fledged proof assistants.

My main aim though, is the application of this approach to the creation of proof assistants
in domains where proof automation is lacking, such as in modal logic and in fields such as
law [37]. T propose that by using AProlog and focusing, any user can implement and customize
her theorem prover to meet her needs. The proof assistant for first-order modal logics described
in this paper is based on the existence of a focused sequent calculus for this logic. I have
therefore obtained such a calculus by the combination of two existing ones. The next section
focuses on its presentation. The following section then introduces the other technology I use —
higher-order logic programming. I then describe the implementation of a proof assistant for
first-order modal logic based on these technologies and give examples of usage and extension. I
finish with a short conclusion and mention some possible future work.

2 Focused sequent calculus for first-order modal logics

Theorem provers are often implemented using efficient proof calculi, like, e.g., resolution,
combined with the additional use of heuristics and optimization techniques. The use of these

A Simple Proof Assistant Libal

techniques together with required operations such as unification and search leads to a lower
degree of trust. On the other hand, traditional proof calculi, like the sequent calculus, rely on
less meta-theory and enjoy a higher degree of trust but are quite inefficient for proof search. In
order to use the sequent calculus as the basis of automated deduction, much more structure
within proofs needs to be established. Focused sequent calculi, first introduced by Andreoli [2]
for linear logic, combine the higher degree of trust of sequent calculi with a more efficient proof
search. They take advantage of the fact that some of the rules are “invertible”, i.e., can be
applied without requiring backtracking, and that some other rules can “focus” on the same
formula for a batch of deduction steps.

In this paper, I will combine two different focused sequent calculi in order to obtain a
sound and complete system for first-order modal logic for K with constant domains and rigid
designation. This means that each quantified variable denotes the same element in all worlds
and in addition, that the domain for quantification in each world is the same. Please refer
to [9] for more information. The existence of focused systems for some other modal logics [27]
suggests that the approach described in this paper can be extended. The syntax for first-order
modal formulas contains atomic predicates P(t1,...,t,), the usual first-order connectives and
quantifiers as well as the modal operators O and (. The first system I will use is the focused
first-order sequent calculus (LKF) system defined in [26]. T will combine it with the focused
sequent calculus for propositional modal logic for K defined in [33]. This calculus is based on
labeled sequents.

The basic idea behind labeled proof systems for modal logic is to internalize elements of the
corresponding Kripke semantics into the syntax. The LMF system defined in [33] is a sound
and complete system for a variety of propositional modal logics. Fig. 1 presents the combined
system, LMF!.

Sequents in LMF" have the form G- © |z : B or G - © 4T, where the relational set (of the
sequent) G is a set of relational atoms, x : B is a labeled formula (see below) and © and I' are
multisets of labeled formulas.

Formulas in LMF" which are expressed in negation normal form, can have either positive or
negative polarity and are constructed from atomic formulas, whose polarity has to be assigned,
and from logical connectives whose polarity is pre-assigned. The choice of polarization does not
affect the provability of a formula, but it can have a big impact on proof search and on the
structure of proofs: one can observe, e.g., that in LKF the rule for V™ is invertible while the one
for V* is not. The connectives A=, V™, O and V are of negative polarity, while A™, VT, { and 3
are of positive polarity. A composed formula has the same polarity of its main connective. In
order to polarize literals, we are allowed to fix the polarity of atomic formulas in any way we see
fit. We may ask that all atomic formulas are positive, that they are all negative, or we can mix
polarity assignments. In any case, if A is a positive atomic formula, then it is a positive formula
and —A is a negative formula: conversely, if A is a negative atomic formula, then it is a negative
formula and —A is a positive formula. The basic entities of the calculus are labelled formulas —
x : I — which attach to each formula F a label = which denotes the world F is true in.

Deductions in LKF are constructed by synchronous and asynchronous phases. A synchronous
phase, in which sequents have the form G - © |} x : B, corresponds to the application of
synchronous rules to a specific positive formula B under focus (and possibly its immediate
positive subformulas). An asynchronous phase, in which sequents have the form G - © /T,
consists in the application of invertible rules to negative formulas contained in I' (and possibly
their immediate negative subformulas). Phases can be changed by the application of the release
rule. In order to simplify the implementation and the representation, I have excluded the cut
rule from the calculus. The admissibility of this rule in LKF means that while proofs might be

3

A Simple Proof Assistant Libal

ASYNCHRONOUS INTRODUCTION RULES

GHONz: AT GFHOQz: BT _ GFONx: Ax: B,T
GFOfz: AN BT K Ggrefaz:Av BT ¥
GU{zRy}F O 1y: B,T GOz [y/z]B,T

GHOfz:0B,T K GFOfz:V2.B,T 'K
SYNCHRONOUS INTRODUCTION RULES

Grolz:A QI—GUQC:B/\Jr GO lx:[t/z|B
GFOlz: AN B K GFHO|z:32.B

Ik

GHOelz:B;
GrFOlx:B VvV By

IDENTITY RULE

GU{zRy} O ly:B
GU{zRy}FO©z: 0B 'K

vt,ie {1,2}

GFz:-B,©lx:B ity

STRUCTURAL RULES

GFO,z:BT

: G-ONz:B Grz:B,©0l)x:B
GFroftz:BT " Greoeyz: B

releaseg Grz:B.O7.

decidey

In decidek, B is positive; in releaser, B is negative; in storeg, B is a positive formula or a
negative literal; in initg, B is a positive literal. In O and Vi, y is different from = and z and
does not occur in ©, I, G.

Figure 1: LMF": a focused labeled proof system for the first-order modal logic K.

harder to find, completeness is not impaired.

In order to prove the soundness and completeness of LMF", we need to define a translation of
first-order modal formulas into first-order logic and prove that the translated formula is provable
in LKF iff the original formula is provable in LMF'. The translation ST,() is similar to the
one in [9] and extends the standard translation (see, e.g., [7]) with a treatment for quantifiers.
Treatment of polarities is omitted from the definition below since it does not affect provability.
This translation provides a bridge between first-order modal logic and first-order classical logic:

STe(P(y1,...,yn)) = P(x,y1,...,Yn) ST.(AANB) = ST (A) A STx(B)
ST, (~A) - ST, (A) ST,(OA) = Vy(R(z,y) D ST,(A))
ST,.(AV B) = ST.(A)V ST.(B) ST.(0A) = 3y(R(z,y) AST,(A))
ST (YyP(y)) = WST(P(y)) ST.(JyP(y)) = FyST=(P(y))

where x is a free variable denoting the world in which the formula is being evaluated. The
first-order language into which modal formulas are translated is usually referred to as first-order
correspondence language [7]. It consists of a binary predicate symbol R and an (n + 1)ary
predicate symbol P for each nary predicate P in the modal language. When a modal operator is
translated, a new fresh variable is introduced. It is easy to show that for any modal formula A,
any model M and any world w, we have that M,w = A if and only if M |= ST, (A)[x + w].

Using the translation, we can state the soundness and completeness proposition. It is
intuitively correct given the results for similar calculi but a proof will clearly be added in the
future.

A Simple Proof Assistant Libal

Z,GU{zRy}FOly:B O(E,0B,y,Z)
=,GU{zRy} Ol z: OB K

Figure 2: Augmenting the § i inference rule

Proposition 2.1. Given a first-order modal formula F, - |z : F is provable in LMF" for an
arbitrary world variable x iff - ST, (F) is provable in LKF.

2.1 Driving the search in the focused sequent calculus

The system LMF" offers a structure for proof search — we can eagerly follow paths which
apply asynchronous inference rules. Full proof search needs also to deal with the synchronous
inference rules, for which there is no effective automation. The ProofCert project [29], which
offers solutions to proof certification, suggests augmenting the inference rules with additional
predicates. These predicates, on the one hand, will serve as points of communication with the
implementation of the calculus (the kernel from now on) and will allow for the control and
tracking of the search. On the other hand, being added as premises to the inference rules, these
predicates do not affect the soundness of the kernel and therefore, do not impair the trust we
can place in searching over it. They can, nevertheless, harm completeness. Consider for example
an implementation of the 3 control predicate which always returns the same witness. Clearly,
the program will fail to find a proof if it requires any other witness. In this example, a correct
implementation will prompt the user for the witness or postpone supplying it (more about that
in Sec. 4.4). The control predicates communicate with the user or prover using a data structure
which is being transferred and manipulated by the predicates. This data structure represents
the proof evidence in the proof certifier architecture discussed by Miller in [29].

This approach is very suitable for conducting search using interactive or automated theorem
provers as well. We can generalize the role of the data structure discussed above to represent
information between the user and the kernel. I will therefore generalize the ”proof evidence”
data structure in the proof certification architecture of Miller to a "proof control” data structure.
In this paper, this data structure can serve as a proof evidence but it will also serve for getting
commands from the user as well as for generating a proof certificate once a proof was found. 1
can now follow other works on proof certification [12, 13] and enrich each rule of LMF! with
proof controls and additional predicates. Figure 2 gives an example of adding the control and
additional predicate (in blue) to the (i inference rule. Figure 3 lists all the predicates separately
from the calculus (due to lack of space). Each sequent now contains additional information in
the form of the proof control Z. At the same time, each rule is associated with a predicate,
such as ¢(Z, F,w,Z’). This predicate might prevent the rule from being called or guide it by
supplying such information as the witness to be used in the application of the Ik or{ i inference
rules. The arguments in the example are the input proof control =, the formula F', the world w
to which we should move next and a proof control Z' which is given to the upper sequent. I call
the resulting calculus LMF*.

One implementation choice is to use indices in order to refer to formulas in the context.
In order to achieve that, the implementations of storex and decideg rules contain additional
information which is omitted from the definition of the LMF" calculus given in Fig. 1.

A Simple Proof Assistant Libal

ASYNCHRONOUS CONTROL PREDICATES
N (E B =8 vV (E,F,Z) Y(ZE, F,=y) O, F,Z'w)
SYNCHRONOUS CONTROL PREDICATES
AN(E,F,Z 2" VH(E, F,Z,4) 3(E, F,t,Z) O(E, F,w, =)
IDENTITY AND STRUCTURAL CONTROL PREDICATES

init(Z,1) release(Z, =) store(Z,C,1,=") decide(Z,1,=Z")

Figure 3: The additional predicates added to the inference rules of LMF" in order to obtain
LMF*®

3 Higher-order logic programming

The other technology I use in this paper in an attempt to build a simple but trusted proof
assistant, is a higher-order logic programming language. AProlog [31] is an extension of Prolog
which supports binders [30] and restricted higher-order formulas [32]. Being a logic programming
language, it gives us proof search, unification, substitution and other operations which are
required in any automated or interactive theorem prover. The extensions allow for the encoding
of the meta-theory of predicate calculi, which is impossible in the first-order Prolog language.
More concretely, the syntax of AProlog has support for A-abstractions, written x\ t for Ax.t
and for applications, written (t x). Existential variables can occur anywhere inside a term and
are denoted by words starting with a capital letter. The variable w occurring in a term F can
be universally quantified by writing pi w\ F. I use the symbols some, all, box, dia, !-!
and &-& to denote the encoded logical connectives ”exists”, "for all”, the modalities "box” and
”diamond”, a negative disjunction and a negative conjunction. The implementation contains only
the negative versions of the disjunction and conjunction rules presented in Sec. 2. As discussed
there, this choice does not affect provability. S-normalization and a-equality are built-in. The
full syntax of the language can be found in Miller and Nadathur’s book ”Programming with
Higher-Order Logic” [31].

The implementation of AProlog on which I have tested the prover is ELPI [16] which can be
installed following instructions on Github!. ELPT offers more than just the implementation of
AProlog and includes features such as having input/output modes on predicates and support of
constraints [15]. These features are not required in the simple proof assistant I describe and are
therefore not used in the implementation. Examples of the way these features are used can be
found in the implementations of proof assistants for HOL [15] and type theory [22].

4 A proof assistant based on focusing and logic program-
ming
In this section, I will present the architecture and techniques used in order to obtain a minimal,

trusted proof assistant for first-order modal logic. I believe that this approach can be applied
for creating proof assistants for various other logics, based on the existence of suitable focused

Thttps://github.com/LPCIC/elpi

https://github.com/LPCIC/elpi

A Simple Proof Assistant Libal

calculi. Some parts of the code are omitted from this paper for brevity. These parts mainly
deal with bootstrapping the program and are written using shell scripts. The proof assistant
implementation can be found on Github? and Zenodo?.

4.1 The kernel

The first immediate advantage of using a higher-order logic programming language is the simple
and direct coding of the calculus. Fig. 4, 5 and 6 show the code of the whole implementation.
A comparison to Fig. 1 shows that each inference rule directly maps to a AProlog clause. The
conclusion of each rule is denoted by the head of the formula while each premise is denoted by a
single conjunct in the body. The components of each head are the Cert variable, which is used
for the transformation of information between the user and the kernel as well the formula (or
formulas, in the case of a negative phase) to prove. The two phases are denoted by the function
symbols unfk and foc.

We can see immediately the way the control predicates work. Before we can apply a rule,
we need first to consult with the control predicate, which in turn, may change the Cert data
structure or even falsify the call. I will refer to the implementation of these predicates in the next
section, but we can already demonstrate how they work. Consider, for example, the diamond
rule (Fig. 2 and Fig. 6). When AProlog tries to satisfy this clause, it attempts to satisfy each
of the antecedents. The first of which is a call to the implementation of the dia_ke control
predicate. The implementation is discussed in the next section but one can see that in case
the implementation of this clause fails, AProlog will fail to apply the diamond rule and it will
backtrack. One can also see that the implementation can substitute for the variable T a term.
This term will then be used by the rule as the new label for the formula. This simple mechanism
allows us to both control the proof search and to supply additional information (based on user
input, for example).

The way we store polarized formulas in the implementation of the labeled sequent calculus is
by using a term of the form 1form w f where w is the label (world) and £ is the formula. Atoms
are polarized using the constructor p for positive atoms and n for negative ones. The example in
Sec. 4.3 demonstrates the use of these constructors. Five predicates of special interest are the
store, forall, exists, box and diamond. Each emphasizes the need for a higher-order logic
programming language in a different way.

The store shows the importance of supporting implications in the bodies of predicates.
It allows us to dynamically update the AProlog database with new true predicates. We use
this feature in order to both denote the context of the sequent, i.e those formulas on which
we may decide on later, and the relational set. One can also deal with this problem in the
Prolog programming language. Either by using lists for denoting the context or by using the
assert and retract predicates. Both approaches prevent us from having a direct and concise
representation of LMF". The first due to the requirement to repeatedly manipulate and check
the list (not to mention the overhead for searching in the list). The second due to the need to
apply the system predicates manually in the correct points in the program. For example, one
should manually retract an asserted predicate once we leave the scope of the implication. These
manual manipulations can lead to unnecessary complications.

The forall predicate has a condition that the variable y is a fresh variable. Dealing with
fresh variables is a recurring problem in all implementations of theorem provers. Some approaches
favor using a specific naming scheme in order to ensure that variables are fresh while others

%https://github.com/proofcert/PPAssistant
3https://zenodo.org/record/1252457

https://github.com/proofcert/PPAssistant
https://zenodo.org/record/1252457

©O00 O Uk W

A Simple Proof Assistant Libal

% decide
check Cert (unfK [1) :-
decide Cert Indx Cert’,
inCtxt Indx P,
isPos P,
check Cert’ (foc P).
% release
check Cert (foc N) :-
isNeg N,
release Cert Cert’,
check Cert’ (unfK [N]).
% store
check Cert (unfK [C|Rest]) :-
(isPos C ; isNegAtm C),
store Cert C Indx Cert’,
inCtxt Indx C => check Cert’ (unfK Rest).
% initial
check Cert (foc (lform L (p A))) :-
initial_ke Cert Indx,
inCtxt Indx (lform L (n A)).

Figure 4: AProlog implementation of the structural rules

might use an auxiliary set of used variables. Using AProlog we need just to quantify over this
variable. AProlog variable capture avoidance mechanism will ensure that this variable is fresh.
Another feature of AProlog which is exhibited by this rule is higher-order application. The
quantified formula variable B is applied to the fresh variable. In general, the application of a
variable to a term requires higher-order unification in the proof search, which is known to be
undecidable [19]. Miller has shown [28] that the application of a variable to a bound variable
require a simpler form of unification, which is not only decidable but exhibits the same properties
as the first-order unification used in Prolog.

A more intriguing predicate though, is exists. Here we see an application of two free
variables, B and T. Such an application is beyond the scope of the efficient unification algorithm
just mentioned. Despite that, implementations of AProlog apply sound techniques of postponing
these unification problems [34] which seem to suffice in most cases.

Regarding the modalities, we see a close similarity between box and forall. The only
difference being the addition of the new accessible world to the AProlog database, in a similar
way to store. The diamond rule, which is very similar to the exists one, then also requires
the existence of the specific relation in the AProlog database in order to proceed.

4.2 Interacting with the user

The previous section discussed the implementation of the calculus. For some problems, all we need
to do is to apply the kernel on a given formula. AProlog will succeed only if a proof can be found
and will automatically handle all issues related to search, substitution, unification, normalization,
etc. which are normally implemented as part of each theorem prover or proof assistant. This
gives us a very simple implementation of an automated theorem prover for first-order modal
logic. The downside is, of course, that first-order modal theorem proving is undecidable and
requires coming up with witnesses for worlds and terms, making automated theorem proving over
the sequent calculus less practical than other methods, such as resolution [14] and free-variable
tableaux [10]. The main novelty of this paper is that we can overcome this downside by using
other features of AProlog, namely the input and output functionality.

Using the control predicates, we can notify the user of interesting rule applications, such as
the addition of fresh variables, new worlds or the storing of formulas in the context. We can also

8

©O00 O Uk W

© 00O Uk WN -

A Simple Proof Assistant Libal

% orlNeg
check Cert (unfK [l1form L (A !-! B) | Rest]) :-
orNeg_kc Cert (lform L (A !-! B)) Cert?’,

check Cert’ (unfK [1lform L A, 1lform L B| Rest]).
% conjunction
check Cert (unfK [lform L (A &-& B) | Restl) :-
andNeg_kc Cert (lform L (A &-& B)) CertA CertB,
check CertA (unfK [lform L A | Restl]),
check CertB (unfK [lform L B | Rest]).
% boz modality
check Cert (unfK [lform L (box B) | Thetal) :-
box_kc Cert (1lform L (box B)) Cert’,
pi w\ rel L w => check (Cert’ w) (unfK [lform w B | Thetal]).
% forall quantifier
check Cert (unfK [lform L (all B) | Thetal) :-
all_kc Cert (all B) Cert’,
pi w\ (check (Cert’ w) (unfK [lform L (B w) | Thetal)).

Figure 5: AProlog implementation of the asynchronous rules

% diamond modality

check Cert (foc (lform L (dia B))) :-
dia_ke Cert (lform L (dia B)) T Cert’,
rel L T,
check Cert’ (foc (lform T B)).

% exzists quantifier

check Cert (foc (lform L (some B))) :-
some_ke Cert (lform L (some B)) T Cert’,
check Cert’ (foc (1lform L (B T))).

Figure 6: AProlog implementation of the Synchronous rules

use them in order to prompt the user for input about how to proceed in case we need to decide
on a formula from the context or pick up a witness or a world. Fig. 7 shows the implementation
of the control predicates which support these basic operations. The predicates are divided into
two groups. Those which can be applied fully automatically, which include most predicates, and
those which are applied interactively, which include the decide, diamond and exists predicates.
I have simplified the implementation to include only negative conjunctions and disjunctions
(see Sec. 3). The addition of the positive versions does not fundamentally change the approach
presented here. In case we would like to support these two inference rules, we will have to treat
them in the interactive group.

The interface for a user interaction with the program is to iteratively add guidance information
to the proof control. At the beginning, the control contains no user information and the program
stops the moment such information is required. In addition, the program displays to the user
information about the current proof state such as about fresh variables which were used or new
formulas which were added to the context, together with their indices. When the program stops
due to required user information, it prompts a message to the user asking the user to supply this
information as can be seen in the implementation of the predicates decide (lines 1-3), diamond
(lines 25-32) and some (lines 42-49).

The proof control I use contains 5 elements.

e the proof evidence — this is used in order to display at the end to the user the generated
proof

e the list of user commands — this list, initially empty, contains the commands from the user

9

A Simple Proof Assistant Libal

e an index marking the current inference rule — this index is used to store labeled formulas
in a consistent way

e the list of fresh worlds generated so far — this list is used in order to allow the user to pick
up a world The user, of course, has no access to the fresh worlds (or to any other part in
the trusted kernel) and T use a mechanism discussed below in order to allow her to supply
them

e the list of fresh variables generated so far — Similarly to the list of fresh worlds, this list is
used in order to allow the user to supply term witnesses which contain fresh variables

Each of the interactive predicates contains two versions, one for prompting the user for input
and the other for applying the user input. The first is applied when the user commands list (the
second argument in the controls object) is empty. The input in the case of the decide predicate
is an index of a formula in context (which should be chosen from the ones displayed earlier
by the store predicate). In the case of the diamond or some predicates, the input is the term
witness.

In the case of the diamond and on some cases, also for the some inference rule, the imple-
mentation needs to substitute fresh variables inside the term supplied by the user. I use AProlog
abstraction and S-normalization directly. The user keeps track on the number n and order
of both fresh worlds and fresh variables introduced so far and the chosen world or the term
witness is then of the form 24\ ...z, \t where t may contain any of the bound variables, in the
case of some, or the actual chosen world, in the case of diamond. The apply_vars predicate is
responsible for applying to the terms the fresh variables in the correct order. It should be noted
that this cumbersome mechanism can be easily replaced by a naming mechanism given a more
sophisticated user interface.

The indexing mechanism I use is based on trees and assign each unitary child of a parent I
the index (u I) while binary children are assigned the indices (1 I) and (r I) respectively.
The index of the theorem is e. Note that the indexing system is based on inferences and that
indices are assigned to formulas only upon storing them in the context. For example, if our
theorem is A &-& B, meaning a negative conjunction, then this formula is assigned the index
e. In the focused sequent calculus, the only inference rule which can be applied right now is
the negative conjunction and the left and right derivations keep track of the indices (1 e) and
(r e). Only in case we store the formulas A or B in the following step will we assign them the
indices (1 e) or (r e)

I note here that the implementation is using a relatively basic user feedback. In particular,
when conjunctions and branching are involved, it becomes very difficult to follow the different
branches and their respective contexts and fresh variables. I do supply a mechanism for handling
conjunctions (via the branch command), but a more user friendly implementation would need
to display this information in a better way, for example, by the use of graphical trees.

4.3 An example

In this section I demonstrate the execution of the prover on the Barcan formula, which is a
theorem of modal logic K with constant domains and rigid terms. In order to use the assistant,
the user needs to call the prover with the theorem and an empty commands list.
$>./run.sh ’((some x\ dia (n (q x))) !'-! (box (all x\ (p (q x)))))’ ’[1’
Since we start in a negative phase and the theorem is negative, the assistant eagerly does
the following ordered steps, the first five of which are asynchronous.

10

OO0 O U W

A Simple Proof Assistant

decide (interact (unary (decideIl no_index) leaf)

output std_out
output std_out

decide_ke (interact (unary (decideI I) L) [I|Com] FI E1 E2) I

(interact L Com (u FI) E1 E2).
store_kc (interact (unary (storel I) L) Com I E1 E2) F I (interact L Com (u I) E1 E2)
"Adding toycontextyformulay",

output std_out
term_to_string
output std_out
output std_out
term_to_string
output std_out
output std_out

release_ke (interact (unary releasel L) Com FI E1 E2)
initial_ke (interact (axiom (initiall I)) _
orNeg_kc (interact (unary (orNegl FI) L) Com FI E1 E2) F (interact L Com (u FI) E1 E2).
andNeg_kc (interact (binary (andNegI FI) L1 L2) [branch LC RC] FI E1 E2) F

(interact L2 RC (r FI) E1 E2).

box_kc (interact (unary (boxI FI) L) Com FI E1 E2) F (Eigen\ (interact L) Com (u FI)

(interact L1 LC (1 FI) E1 E2)

"\n", fail.

F s1,

s1,
"ywithindexy",
I s2,

s2,

Il\n" .

[eigen FI Eigen| E1] E2) :-

output std_out
term_to_string
output std_out
output std_out
dia_ke (interact
output std_out
term_to_string
output std_out
output std_out
term_to_string
output std_out
output std_out
dia_ke (interact

"Usingyworld,variabley",

FI S1,
s1,
u\nu .

(unary (dial no_index) leaf) []1 FI _ _) F _ _

"You,have to,choose an ;index to decideon from ,the ,context",

(interact L Com (u FI) E1 E2).

Libal

"You,have to,choose the, ,world toyuse for ,instatiation for ,the formula: ",

F s1,

Ss1,

"\nAt_ index: ",
FI sS2,

s2,

"\n", fail.

(unary (somelI FI) L) [W|Com] FI E1 E2)
(interact L Com (u FI) E1 E2)

apply_vars W E1 W’.

all_kc (interact (unary (alll FI) L) Com FI E1 E2) F
(Eigen\ (interact L) Com (u FI) E1 [eigen FI Eigen|
"Usingyeigen variabley",

output std_out
term_to_string
output std_out
output std_out

some_ke (interact (unary (somel no_index) leaf) [] FI
"You_have_ to,choose the term to use for instantiation:

output std_out
term_to_string
output std_out
output std_out
term_to_string
output std_out
output std_out

some_ke (interact (unary (someI FI) L) [T|Com] FI E1 E2)
(interact L Com (u FI) E1 E2) :

FI 81,
s1,
"\n" .

F s1,

Ss1,
"\nAt_index:_ ",
FI S2,

s2,

"\n", fail.

apply_vars T E2 T’.
apply_vars T [] T.

apply_vars T [eigen

apply_vars (T X) L T’.

Figure 7: AProlog implementation of basic interaction with the user

XIL] T’ :-

W

E2])

) F

- T

"
B

11

A Simple Proof Assistant Libal

Adding to context formula lform z (some x0 \ dia (n (g x0))) with index u e

Using world variable u (u e)

Using eigen variable u (u (u e))

Adding to context formula 1form X0 (p (q x1)) with index u (u (u (u e)))

aAdding to context formula 1form X0 (n (q x1)) with index u (u (u (u (u (u (u (u (u e)))))))
You have to choose an index of a formula to decide on from the context

At index: u (u (u (u (u (u (u (u (u (u e)))))))))

Figure 8: A screenshot of an intermediary step of proving the Barcan formula

1. Applies the Vi inference rule

2. Adds to the context the positive formula 1form z some x\ dia (n (q %)) with index
u e (z denotes the starting world)

3. Applies the Ok in order to produce a fresh world
4. Applies the Vg in order to produce a fresh variable

5. Adds to the context the positive formula 1form x0 (p (q x1))
with index u (u (u (u e)))

6. Prompts the user to input an index to decide on

Using the provided simple user interface, the program now terminates and the user is
expected to run it again, this time setting the list provided in the second argument to contain an
interactive command. The first interactive command is therefore, to choose the index u e. We
are now entering the synchronous phase and are asked also to supply the witness for the Jx rule.
In this case, the witness is just the (only) fresh variable introduced earlier and we command
the assistant to choose (x\x). Still being in a synchronous phase, we are now asked to supply
the world to satisfy the ¢k rule. We choose the first (and only) previously introduced world
using (x\x). The assistant now observes that we have the negative atom 1form x0 (n (q x1))
with index u (u (u (u (u (u (u (u (u e)))))))). We are now asked again to pick up an
index of a formula to decide on. We observe that the context contains the positive and negative
versions of the same atom (in the same world) and we decide on the positive version with index
u (u (u (u e))). The initx rule is automatically applied and the assistant responds with the
formal proof we have obtained.

The last execution is therefore,

$>./run.sh ’((some x\ dia (n (q x))) !'-! (box (all x\ (p (q x)))))°
P[(u e),(x\x),(x\x),u (u (u (u e)))]’

Fig. 8 shows a screenshot of the interaction after supplying the input > [(u e), (x\x), (x\x)]’

4.4 Creating and using tactics

Supporting interactive proof search still falls short from the needs of most users. Optimally, a
proof assistant would require the help of the user only for the most complex problems and will be
able to deal with simpler ones by itself. In the previous example, we had to search for the index
to decide on. But, there are finitely many options only. Can’t we let the prover try all options
by itself? In order to support a tactics language, I extend the program with an additional tactics
file. This file will contain additional implementations for the control predicates. The AProlog
interpreter will choose the right implementation according to whether the predicate is called
with a tactic command or with a command to decide on an index of a formula or a witness

12

N OO W

A Simple Proof Assistant Libal

decide_ke (interact (unary (decideI I) L) [auto|Com] FI E1 E2) I
(interact L Com (u FI) E1 E2).
dia_ke (interact (unary (dial FI) L) [world|Com] FI E1 E2) _ T
(interact L Com (u FI) E1 E2) :-
apply_vars T E1 T’.
some_ke (interact (unary (someI FI) L) [var|Com] FI E1 E2)
(interact L Com (u FI) E1 E2) :- !.

Figure 9: AProlog implementation of some tactics

term. Fig. 9 presents the additional predicates we need to add in order to support several basic
tactics.

The auto tactic, which is supplied when asked to decide on a formula, attempts to choose
one according to the order they are stored in the AProlog database. Similarly, the world tactic
attempts to choose a world according to the order we have stored them in the proof control.
Coming up with a witness is more complex. Unlike with deciding on a formula or selecting a
world, we are now facing a possibly infinite number of options. Luckily, AProlog can again help
us with the task. We can use the language metavariables and AProlog will postpone the choice
until it can unify this variable with an appropriate term. The var tactic therefore replaces the
chosen term with such a metavariable.

Using these tactics, the commands required in order to prove the theorem from the example
is

$>./run.sh ’((some x\ dia (n (gq x))) !'-! (box (all x\ (p (q x)))))°
’[auto,var ,world,auto]’

It should be noted though, that in the general case the simple tactics presented may not be
as easy to use. For example, when deciding using the auto command, the system will decide on
the last formula stored in the context and only if it fails later to find a proof, will it backtrack
and pick another. This scheme will therefore get very confusing if we are also prompt to input
information on the wrong branch. One can think of more advanced tactics which present to the
user all possible paths and not just one as in the current implementation.

5 Conclusion and further work

The aim of this paper was to investigate the applicability of a minimal proof assistant based on
focusing and AProlog for interactive proof search in first-order modal logic. We have considered
also the amount of work required in order to design proof assistants for arbitrary focused systems.

The main target audience of this approach are users who are in need of a proof assistant for
logics which do not enjoy an abundant number of tools. The next step is to try to apply this
approach to concrete domains where interactive tools are scarce, such as in deontic logic ([5]
contains some interesting recent developments). There are several other possible extensions to
this work. An important extension is the creation of a generic graphical user interface, which
can parse and display AProlog proofs and proof information. Another is the creation of a library
of basic tactics which can be applied to a variety of logics.

References

[1] The Coq proof assistant. https://coq.inria.fr/.

13

A Simple Proof Assistant Libal

2]
Bl

(4]

[5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]
[14]

[15]

[16]

(17]
18]
[19]
20]

21]

14

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput.,
2(3):297-347, 1992.

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal certification of code-based
cryptographic proofs. ACM SIGPLAN Notices, 44(1):90-101, 2009.

Christoph Benzmiiller and Bruno Woltzenlogel Paleo. Interacting with modal logics in the coq
proof assistant. In International Computer Science Symposium in Russia, pages 398—411. Springer,
2015.

Christoph Benzmiiller, Xavier Parent, and Leendert van der Torre. A deontic logic reasoning
infrastructure. In Russel Miller, Dirk Nowotka, and Florin Manea, editors, 14th Conference on
Computability in Furope, CiE 2018, Kiel, Germany, July 30-August, 2018, Proceedings. Springer,
2018. To appear.

Christoph Benzmiiller and Bruno Woltzenlogel Paleo. Higher-order modal logics: Automation and
applications. In Adrian Paschke and Wolfgang Faber, editors, Reasoning Web 2015, number 9203
in LNCS, pages 32-74, Berlin, Germany, 2015. Springer. (Invited paper).

Patrick Blackburn and Johan Van Benthem. Modal logic: a semantic perspective. In Studies in
Logic and Practical Reasoning, volume 3, pages 1-84. Elsevier, 2007.

Sylvie Boldo, Frangois Clément, Jean-Christophe Fillidtre, Micaela Mayero, Guillaume Melquiond,
and Pierre Weis. Formal proof of a wave equation resolution scheme: the method error. In
International Conference on Interactive Theorem Proving, pages 147-162. Springer, 2010.

Torben Braiiner and Silvio Ghilardi. 9 first-order modal logic. In Studies in Logic and Practical
Reasoning, volume 3, pages 549-620. Elsevier, 2007.

Serenella Cerrito and Marta Cialdea Mayer. Free-variable tableaux for constant-domain quantified
modal logics with rigid and non-rigid designation. In International Joint Conference on Automated
Reasoning, pages 137-151. Springer, 2001.

Boutheina Chetali and Quang-Huy Nguyen. About the world-first smart card certificate with eal7
formal assurances. Slides 9th ICCC, Jeju, Korea (September 2008), www. commoncriteriaportal.
org/icce/9icee/pdf B, 2404, 2008.

Zakaria Chihani, Tomer Libal, and Giselle Reis. The proof certifier checkers. In International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods, pages 201-210.
Springer, 2015.

Zakaria Chihani, Dale Miller, and Fabien Renaud. A semantic framework for proof evidence.
Journal of Automated Reasoning, 59(3):287-330, 2017.

Marta Cialdea. Resolution for some first-order modal systems. Theoretical Computer Science,
85(2):213-229, 1991.

Cvetan Dunchev, Claudio Sacerdoti Coen, and Enrico Tassi. Implementing hol in an higher order
logic programming language. In Proceedings of the Eleventh Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice, page 4. ACM, 2016.

Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. Elpi: Fast, em-
beddable, \lambda prolog interpreter. In Logic for Programming, Artificial Intelligence, and
Reasoning, pages 460-468. Springer, 2015.

Amy Felty. Implementing tactics and tacticals in a higher-order logic programming language.
Journal of Automated Reasoning, 11(1):43-81, 1993.

Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic programming
language. In International Conference on Automated Deduction, pages 61-80. Springer, 1988.
Warren D Goldfarb. The undecidability of the second-order unification problem. Theoretical
Computer Science, 13(2):225-230, 1981.

Georges Gonthier. Formal proof-the four-color theorem. Notices of the AMS, 55(11):1382-1393,
2008.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, Frangois Garillot,

A Simple Proof Assistant Libal

22]
23]
24]
[25]
[26]

[27]

28]
[29]
[30]
31]
[32]
33
34
135]
36]

37]

(38]

Stéphane Le Roux, Assia Mahboubi, Russell OConnor, Sidi Ould Biha, et al. A machine-checked
proof of the odd order theorem. In International Conference on Interactive Theorem Proving, pages
163-179. Springer, 2013.

Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. Implementing type theory in higher
order constraint logic programming. 2017.

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang Le Truong,
Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang Nguyen, et al. A formal proof of
the kepler conjecture. In Forum of Mathematics, Pi, volume 5. Cambridge University Press, 2017.
John Harrison. The HOL light theorem prover. https://github.com/jrhi13/hol-1light/.

Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107-115,
20009.

Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic, and classical logics.
Theor. Comput. Sci., 410(46):4747-4768, 2009.

Sonia Marin, Dale Miller, and Marco Volpe. A focused framework for emulating modal proof
systems. In Advances in Modal Logic 11, proceedings of the 11th conference on ”Advances in Modal
Logic,” held in Budapest, Hungary, August 30 - September 2, 2016, pages 469-488, 2016.

Dale Miller. A logic programming language with lambda-abstraction, function variables, and simple
unification. Journal of logic and computation, 1(4):497-536, 1991.

Dale Miller. A proposal for broad spectrum proof certificates. In International Conference on
Certified Programs and Proofs, pages 54-69. Springer, 2011.

Dale Miller. Mechanized Metatheory Revisited: An Extended Abstract . In Post-proceedings of
TYPES 2016 , Novi Sad, Serbia, 2017.

Dale Miller and Gopalan Nadathur. Programming with higher-order logic. Cambridge University
Press, 2012.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a foundation
for logic programming. Annals of Pure and Applied logic, 51(1-2):125-157, 1991.

Dale Miller and Marco Volpe. Focused labeled proof systems for modal logic. In Logic for
Programming, Artificial Intelligence, and Reasoning, pages 266—280. Springer, 2015.

Gopalan Nadathur. A treatment of higher-order features in logic programming. Theory and Practice
of Logic Programming, 5(3):305-354, 2005.

Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant for
higher-order logic, volume 2283. Springer Science & Business Media, 2002.

Jens Otten. Mleancop: A connection prover for first-order modal logic. In International Joint
Conference on Automated Reasoning, pages 269-276. Springer, 2014.

Livio Robaldo and Xin Sun. Reified input/output logic: Combining input/output logic and
reification to represent norms coming from existing legislation. Journal of Logic and Computation,
27(8):2471-2503, 2017.

Enrico Tassi. Elpi: an extension language for coq metaprogramming coq in the elpi Aprolog dialect.
2017.

15

https://github.com/jrh13/hol-light/

	Introduction
	Focused sequent calculus for first-order modal logics
	Driving the search in the focused sequent calculus

	Higher-order logic programming
	A proof assistant based on focusing and logic programming
	The kernel
	Interacting with the user
	An example
	Creating and using tactics

	Conclusion and further work

