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Interfacing with theorem provers is normally done by specifying a strategy. Such a strategy can
be local, such as using tactics in interactive theorem provers, or global when using automatic ones.
Focused proof calculi have a clear separation between the phases in the proof search which can be
done fully automatically and those phases which require decision making. The calculi allow for an
automated switch between the two phases and thus, make them very suitable for interactive theorem
proving. The inference rules of these proof calculi can be defined using logical formulas, such as
implications. Logic programming languages allow for proof search over a database of such logical
formulas and also support interaction with the user via input/output calls.

In this paper I describe a possible process of writing an interactive proof assistant over a focused
sequent calculus using the higher-order programming language lambda-prolog. I attempt to show that
one can gain a high level of trust in the correctness of the prover, up to the correctness of an extremely
small kernel. This process might allow one to obtain a fully functional proof assistant using a small
amount of code and by using a clear process for arbitrary focused calculi. The combination of these
factors might allow users from different disciplines to develop personalized, trusted and simple proof
assistants.

1 Introduction

Proof assistants are sophisticated systems which have helped users to prove a wide range of mathematical
theorems [5, 15, 16, 18] and program properties [4, 6, 20]. Nevertheless, these tools normally require
knowledge of computational logic, mathematical skills and experience with the chosen tool. In addition,
users must have some familiarity with the domain of the chosen tool, such as intuitionistic type theory for
Coq [1] and Lean [27], set theory for Mizar [33] or higher-order logic for Isabelle/HOL [29] and HOL
Light [2] despite the existence of different shallow embeddings of other domains.

At the same time, there are many users who lack one of the above requirements but would still like
to be able to enjoy the support of a computer in order to proof theorems in a wide array of domains,
from university students to researchers of law and linguistics. There is an effort to bring proof assistants
closer to different audiences, for example the tool CalcCheck [19], attempts to help students use a proof
assistant by abstracting over the mathematical language required. This effort focuses on one domain and
one audience.

Many users who could enjoy the help of a proof assistant are left, therefore, without such support.
When accumulating the factors which prevent the implementation of a personal proof assistant adapted to
the needs of each student and researcher, we see that proof assistants are non-trivial software requiring a
high level of programming skills. Therefore, the majority of proof assistants are implemented in functional
programming languages which facilitate their creation. Still, programmers of any proof assistant must
handle a variety of common but non-trivial tasks such as proof search, variables, binders, unification,
substitutions and many others.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Prover based on Focusing

Taking all these points into account, this paper claims that the main reason for the complexity of proof
assistants is their attempt to be as general as possible on the expense of simplicity of the calculus. This is
understandable given the complexity of creating a proof assistant. The alternative suggested in this paper
is to create a specific and non-general proof assistant. Such a proof assistant will be easier to use for the
non-expert. In order to tackle the complexity of designing a new proof assistant, the paper suggests using
a specific recipe based on the combination of focused sequent calculus and logic programming.

Advocates of higher-order logic programming languages, such as Felty and Miller [12] have argued
that these languages are very suited for the creation of proof assistants [11, 24] and other proof theoretical
products [23]. Higher-order logic programming languages give a native support for all of the required
tasks just mentioned and offer, therefore, not only a much easier coding experience but also an increased
level of trust in correctness. The system Twelf [30], which is based on dependent type theory, is enjoying
all the above properties. A main difference between Twelf and λProlog is that Twelf is not a full-featured
logic programming languages and lacks properties such as input/output, which are a requirement for an
interactive proof assistant.

More recently, Sacerdoti Coen, Tassi and their team have developed an efficient interpreter [10] for
the higher-order logic programming language λProlog [25] and applied it to the creation of several proof
assistants [9, 17, 32]. They showed that using higher-order logic programming greatly reduces the size of
the program.

Another complexity arising in the creation of proof assistants is the need to support complex interfaces
between users and machines. The calculi at the core of most proof assistants do not support, out of
hand, interactive proof search. Focused sequent calculi [3] partially solve this problem by separating
proof search into two different modes. One of the modes, which can be executed fully automatically,
can be applied eagerly in order to save the user from tasks not requiring her attention. The assistant then
(automatically) switches to the second mode when user interaction is required.

In this paper I want to take one step forward and show that when using higher-order logic programming
in combination with a focused calculus, the creation of a new proof assistant becomes rather trivial. I
exemplify that by the creation of a proof assistant for first-order classical logic which consists of less than
100 lines of code. This proof assistant can be easily extended with new tactics and features.

The use of a focused calculus together with higher-order logic programming very closely relates to
the work by Miller and his group towards proof certification [23, 8, 7]. Given that proof certification
can be considered as a restriction of interactive proof search where the interaction is done between the
proof certificate and the program, this paper attempts to generalize the approach to arbitrary interaction
including the interaction between a user and a program. At the same time, using higher-order logic
programming towards the creation of proof assistants is one of the purposes of the group behind the ELPI
interpreter [9, 17, 32]. Their work is focused on the implementation and extension of fully fledged proof
assistants.

My main goal though is the application of this approach to the creation of proof assistants in domains
where proof automation is lacking, such as in modal logic and in fields outside of computational logic,
such as law and linguistics. I propose that using λProlog and focusing, any user can implement and
customize her theorem prover to meet her needs.

Before we go to the next section, I would like to clarify the claims about trust mentioned earlier.
Trust in proof assistants is measured according to the complexity of their “kernels” – those parts of
the assistants which need to be trusted. In turn, the complexity of kernels is measured by the size and
complexity of the code in which they are written. The most popular approach to increase trust in kernels is
to program them in a strongly typed functional programming language, such as ML. As discussed above,
these kernels are still relatively large (thousands of lines of code) which impairs their trust. Using logic



T. Libal 3

programming allows for much smaller kernels (measured in few hundreds of lines of code). Higher-order
logic programming still exhibit strong types and the existence of two compilers, greatly decreases the
chance of errors originating in bugs in the implementations of λProlog.

The paper is organized as follows. The next two sections introduce the two technologies I am using,
the focused sequent calculus and higher-order logic programming. I then describe the implementation of
a proof assistant for first-order classical logic based on these technologies and give examples of ts usage
and extensions. I finish with a short conclusion and mention some possible future work.

2 Focused sequent calculus

Theorem provers often employ efficient proof calculi, like, e.g., resolution, possibly with the additional
use of heuristics or optimization techniques, whose complexity leads to a lower degree of trust. On the
other hand, traditional proof calculi, like the sequent calculus, enjoy a high degree of trust but are quite
inefficient for proof search. In order to use the sequent calculus as the basis for proof search, much more
structure within proofs needs to be established. Focused sequent calculi, first introduced by Andreoli
[3] for linear logic, combine the higher degree of trust of sequent calculi with a more efficient proof
search. They take advantage of the fact that some of the rules are “invertible”, i.e., can be applied without
requiring backtracking, and that some other rules can “focus” on the same formula for a batch of deduction
steps. In this paper, I will make use of the classical focused sequent calculus (LKF) system defined in
[21]. Fig. 1 presents, in black font, the rules of LKF.

Formulas in LKF are expressed in negation normal form: they can have either positive or negative
polarity and are constructed from atomic formulas, whose polarity has to be assigned, and from logical
connectives whose polarity is pre-assigned. The choice of polarization does not affect the provability of a
formula, but it can have a big impact on proof search and on the structure of proofs: one can observe, e.g.,
that in LKF the rule for ∨− is invertible while the one for ∨+ is not. The connectives ∧−,∨− and ∀ are of
negative polarity, while ∧+,∨+ and ∃ are of positive polarity. A compound formula has the same polarity
as its main connective. In order to polarize literals, we are allowed to fix the polarity of atomic formulas
in any way we see fit. We may ask that all atomic formulas are positive, that they are all negative, or we
can mix polarity assignments. In any case, if A is a positive atomic formula, then it is a positive formula
and ¬A is a negative formula: conversely, if A is a negative atomic formula, then it is a negative formula
and ¬A is a positive formula

Deductions in LKF are done during synchronous or asynchronous phases. A synchronous phase, in
which sequents have the form `Θ⇓B, corresponds to the application of synchronous rules to a specific
positive formula B under focus (and possibly its immediate positive subformulas). An asynchronous
phase, in which sequents have the form `Θ⇑Γ, consists in the application of invertible rules to negative
formulas contained in Γ (and possibly their immediate negative subformulas). Phases can be changed by
the application of the release rule. Θ denotes the context stored (via the store rule) formulas which are
postponed. Since we are always applying negative rules eagerly, the context can contain only positive
formulas or negative atoms. The decide rule picks a context formula and focuses on it.

In order to simplify the implementation and the representation, I have excluded the cut rule from
the calculus. given that LKF is cut admissible, this simplification does not affect provability but may
complicate the process of finding proofs.
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2.1 Driving the search in the focused sequent calculus

LKF offers a structure for a proof search – we can eagerly follow paths which apply asynchronous
inference rules. Full proof search needs also to deal with the synchronous inference rules, for which
there is no effective automation. The ProofCert project [23], which offers solutions to proof certification,
suggests augmenting the inference rules with additional predicates. On the one hand, these predicates,
will serve as points of communication with the implementation of the calculus (the “kernel” from now
on) and will allow for the control and tracking of the search. Each inference call in the kernel will call a
control predicate with the aim of both obtaining and supplying information. On the other hand, being
added as premises to the inference rules, these predicates do not affect the soundness of the kernel and
therefore, do not impair the trust we can place in searching over it. Once a control predicate is being
called by the kernel, it is using a user supplied and non-trusted code for recording information from the
kernel or supplying the kernel with commands from the user. These predicates communicate with each
other using a data structure which is passed around during the proof search. This data structure represents
the proof evidence in the proof certifier architecture discussed by Miller in [23].

This approach is very suitable for conducting search using both interactive and automatic theorem
provers as well. We can generalize the role of the data structure discussed above to represent information
between the user and the kernel. I will therefore generalize the ”proof evidence” data structure in the proof
certification architecture of Miller to a ”proof control” data structure. In this paper, this data structure
can serve as a proof evidence but it will also serve for getting commands from the user as well as for
generating a proof certificate once a proof was found. We can now follow other work on proof certification
[7, 8] and enrich each rule of LKF with a proof control and additional predicates, given in blue font
in Fig. 1. I call the resulting calculus LKFa. LKFa extends LKF in the following way. Each sequent
now contains additional information in the form of the proof control Ξ. At the same time, each rule is
associated with a predicate (for example initial(Ξ, l)) which, according to the proof control, might prevent
the rule from being called or guide it by supplying such information as the witness to be used in the
application of the ∃ inference rule.

One implementation choice is to use indices in order to refer to formulas in the context. I have
included these indices also in the presentation of the calculus in Fig. 1 as can be seen in rules store and
decide.

3 Higher-order logic programming

The other technology we require in order to build simple but trusted proof assistants, is a higher-order logic
programming language. λProlog [25] is an extension of Prolog which supports binders [24] and restricted
higher-order formulas [26]. Being a logic programming language, it gives us proof search, unification,
substitution and other operations which are required in any automated or interactive theorem prover. The
extensions allow for the encoding of the meta-theory of predicate calculi, which is impossible in the
first-order Prolog language. More concretely, the syntax of λProlog has support for λ -abstractions, written
x\ t for λx.t and for applications, written (t x). Existential variables can occur both in head or argument
positions of terms and are denoted by words starting with a capital letter. The variable w occurring in
a term F can be universally quantified by writing pi w\ F. I use the symbols some, all, !-! and
&-& to denote the encoded logical connectives ”exists”, ”for all”, a negative disjunction and a negative
conjunction. The implementation contains only the negative versions of the disjunction and conjunction
rules presented in Sec. 2. As discussed there, this choice does not affect provability. β -normalization
and α-equality are built-in. The full syntax of the language can be found in Miller and Nadathur’s book
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ASYNCHRONOUS INTRODUCTION RULES

Ξ′ `Θ⇑A,Γ Ξ′′ `Θ⇑B,Γ andNeg(Ξ,Ξ′,Ξ′′)
Ξ `Θ⇑A∧− B,Γ

Ξ′ `Θ⇑A,B,Γ orNeg(Ξ,Ξ′)
Ξ `Θ⇑A∨− B,Γ

(Ξ′y) `Θ⇑ [y/x]B,Γ all(Ξ,Ξ′)
Ξ `Θ⇑∀x.B,Γ †

SYNCHRONOUS INTRODUTION RULES

Ξ′ `Θ⇓B1 Ξ′′ `Θ⇓B2 andPos(Ξ,Ξ′,Ξ′′)
Ξ `Θ⇓B1∧+ B2

Ξ′ `Θ⇓Bi orPos(Ξ,Ξ′, i)
Ξ `Θ⇓B1∨+ B2

Ξ′ `Θ⇓ [t/x]B some(Ξ, t,Ξ′)
Ξ `Θ⇓∃x.B

IDENTITY RULE
〈l,¬Pa〉 ∈Θ initial(Ξ, l)

Ξ `Θ⇓Pa
init

STRUCTURAL RULES

Ξ′ `Θ⇑N release(Ξ,Ξ′)
Ξ `Θ⇓N release

Ξ′ `Θ,〈l,C〉⇑Γ store(Ξ,C, l,Ξ′)
Ξ `Θ⇑C,Γ

store

Ξ′ `Θ⇓P 〈l,P〉 ∈Θ decide(Ξ, l,Ξ′)
Ξ `Θ⇑ · decide

Here, P is a positive formula; N a negative formula; Pa a positive literal; C a positive formula or negative
literal; and ¬B is the negation normal form of the negation of B. The proviso marked † requires that y is
not free in Ξ,Θ,Γ,B.

Figure 1: The proof system LKFa, augmented version of LKF.

”Programming with Higher-Order Logic” [25].
The implementation of λProlog on which I have tested the prover is ELPI [10] which can be installed

following instructions on Github. 1 ELPI offers more than just the implementation of λProlog and includes
features such as having input/output modes on predicates and support of constraints [9]. These features
are not required in the simple proof assistant I describe and are therefore not used in the implementation.
Examples of the way these features are used can be found in the implementations of proof assistants for
HOL [9] and Type Theory [17].

4 A proof assistant based on focusing and logic programming

In this section, I will present the architecture and techniques used in order to obtain a minimal, trusted
proof assistant for classical first-order logic. I believe that this approach can be applied for creating proof
assistants for various other logics, based on the existence of suitable focused calculi.

Some parts of the code are omitted from this paper for brevity. These parts mainly deal with

1https://github.com/LPCIC/elpi
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bootstrapping the program and with type declarations. The proof assistant implementation can be found
on Github 2.

4.1 The kernel

The first immediate advantage of using a higher-order logic programming language is the simple and
direct coding of the calculus. Fig. 2, 3 and 4 show the code of the whole implementation. A comparison
to Fig. 1 shows that each inference rules directly maps to a λProlog predicate. Each inference rule is
implemented using a λProlog implication. The consequent denotes the conclusion of the rule while each
antecedent represents one premise of the rule. The consequent and some antecedents represent a focused
sequent. These sequents are of the form check Cert (unfk L) or check Cert (foc F). The Cert
variable is used for the transformation of information between the user and the kernel, the symbols unfk
and foc represent an asynchronous and synchronous phases, respectively while L and F denote a set of a
single formula.

We can see immediately the way the control predicates work. Before an inference rule is applied,
the implementation first consult with the control predicate, which in turn, may change the Cert data
structure or even falsify the call. I will refer to the implementation of these predicates in the next section.
Three predicates of special interest are the store, forall and exists. Each emphasizing the need for a
higher-order logic programming language in a different way.

The store shows the importance of supporting implications in the bodies of predicates. It allows us
to dynamically update the λProlog database with new true predicates. I use this feature in order to denote
the context of the sequent, i.e. those formulas on which we may decide on later. One can also deal with
this problem in the Prolog programming language. Either by using lists for denoting the context or by
using the assert and retract predicates. Both approaches prevent us from having a direct and concise
representation of LKF. The first due to the requirement of repeatedly manipulate and check the list (not
to mention the overhead for searching in the list) and the second due to the need to apply the system
predicates manually in the correct points in the program which can lead to unnecessary complications.

The forall predicate has a condition that the variable y is a fresh variable. Dealing with fresh
variables is a recurring problem in all implementations of theorem provers. Some approaches favor using
a specific naming scheme in order to ensure that variables are fresh while others might use an auxiliary set
of used variables. Using λProlog we need just to quantify over this variable. λProlog’s variable capture
avoidance mechanism will ensure that this variable is fresh. Another feature of λProlog which is exhibited
by this rule is higher-order application: variables can have functional types and can be applied to other
terms. In this case, the variable B is applied to a fresh variable. Such application requires higher-order
unification in order to succeed, which is known to be undecidable [14]. Miller has shown [22] that such
applications require a simpler form of unification, which is not only decidable but exhibits the same
properties as the first-order unification used in Prolog.

The most intriguing predicate though, is exists. This rule contains an application of two free
variables, B and T. Such an application is beyond the scope of the efficient unification algorithm just
mentioned. Despite that, implementations of λProlog apply techniques of postponing these unification
problems [28] which seems to be enough in most cases.

2https://github.com/proofcert/PPAssistant (branch: uitp)
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1 % decide

2 check Cert (unfK []) :-

3 decide Cert Indx Cert ’,

4 inCtxt Indx P,

5 isPos P,

6 check Cert ’ (foc P).

7 % release

8 check Cert (foc N) :-

9 isNeg N,

10 release Cert Cert ’,

11 check Cert ’ (unfK [N]).

12 % store

13 check Cert (unfK [C|Rest]) :-

14 (isPos C ; isNegAtm C),

15 store Cert C Indx Cert ’,

16 inCtxt Indx C => check Cert ’ (unfK Rest).

17 % initial

18 check Cert (foc (p A)) :-

19 initial Cert Indx ,

20 inCtxt Indx (n A).

Figure 2: λProlog implementation of the structural rules

1 % orNeg

2 check Cert (unfK [A !-! B | Rest]) :-

3 orNeg Cert (A !-! B) Cert ’,

4 check Cert ’ (unfK [A, B| Rest ]).

5 % conjunction

6 check Cert (unfK [A &-& B | Rest]) :-

7 andNeg Cert (A &-& B) CertA CertB ,

8 check CertA (unfK [A | Rest]),

9 check CertB (unfK [B | Rest ]).

10 % forall

11 check Cert (unfK [all B | Theta ]) :-

12 all Cert (all B) Cert ’,

13 pi w\ (check (Cert ’ w) (unfK [B w | Theta] )).

Figure 3: λProlog implementation of the asynchronous rules

1 % conjunction

2 check Cert (foc (A &+& B)) :-

3 andPos Cert (A &+& B) Direction CertA CertB ,

4 (( Direction = left-first ,

5 check CertA (foc A),

6 check CertB (foc B));

7 (Direction = right-first ,

8 check CertB (foc B),check CertA (foc A))).

9 % disjunction

10 check Cert (foc (A !+! B)) :-

11 orPos Cert (A !+! B) Choice Cert ’,

12 (( Choice = left , check Cert ’ (foc A));

13 (Choice = right , check Cert ’ (foc B))).

14 % exists

15 check Cert (foc (some B)) :-

16 some Cert T Cert ’,

17 check Cert ’ (foc (B T)).

Figure 4: λProlog implementation of the Synchronous rules
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4.2 Interacting with the user

The previous section discussed the implementation of the calculus. For some problems, all we need to
do is to apply the kernel on a given formula. λProlog will succeed only if a proof can be found and will
automatically handle all issues related to search, substitution, unification, normalization, etc. which are
normally implemented as part of each theorem prover or proof assistant. This gives us a very simple
implementation of an automated theorem prover for classical first-order logic. The downside is, of course,
that first-order theorem proving requires coming up with witnesses, making automated theorem proving
over the sequent calculus less practical than other methods, such as resolution [31]. The main novelty of
this paper is that we can overcome this downside by using other features of λProlog, namely the input
and output functionality.

Using the control predicates, we can notify the user of interesting rule applications, such as the
addition of fresh variables or the storing of formulas in the context. We can also use them in order to
prompt the user for input about how to proceed in case we need to decide on a formula from the context
or pick up a witness. Fig. 5 shows the implementation of the control predicates which support these basic
operations. The predicates are divided into two groups. Those which can be applied fully automatically,
which include most predicates, and those which are applied interactively, which include the decide

and exists predicates. I have simplified the implementation to include only negative conjunctions and
disjunctions. The addition of the positive versions does not fundamentally change the approach presented
here. In case we would support these two predicates, we will have to treat them in the interactive group.

The interface for a user interaction with the program is to iteratively add guidance information to
the proof control. At the beginning, the control contains no user information and the program stops the
moment such information is required. In addition, the program displays to the user information about
the current proof state such as about fresh variables which were used or new formulas which were added
to the context, together with their indices. When the program stops due to required user information, it
prompts a message to the user and asks her to supply this information as can be seen in the implementation
of the predicates decide (lines 1–3) and some (lines 24–26) in Fig 5.

The proof control I use contains 4 elements.

• the proof evidence - this is used in order to display at the end to the user the generated proof

• the list of user commands - this list, initially empty, contains the commands from the user

• the index of the current formula - this index is used to label formulas with indices in a consistent
way

• The list of fresh variables generated so far - this list is used in order to allow the user to supply term
witnesses which contain fresh variables. The user, of course, has no access to the fresh variables
and we use a mechanism discussed below in order to allow her to supply these terms

Each of the interactive predicates contains two versions, one for prompting the user for input and the
other for applying the user input. The first is applied when the user command list (the second argument in
the controls object) is empty. The input in the case of the decide predicate is an index of a formula in
context (which should be chosen from the ones displayed earlier by the store predicate). In the case of
the some predicate, the input is the term witness.

In some cases, the implementation of the some inference rules needs to substitute fresh variables
inside the term supplied by the user. I use λProlog abstraction and β -normalization directly. The user
keeps track of the number n and order of fresh variables introduced so far and the term witness is then
of the form x1\ . . .xn\t where t may contain any of the bound variables. The apply_vars predicate is
responsible for applying to the terms the fresh variables in the correct order.



T. Libal 9

1 decide (interact (unary (decideI no_index) leaf) [] _ _) _ _ :- !,

2 output std_out "You have to choose an index to decide on from the context",

3 output std_out "\n", fail.

4 decide (interact (unary (decideI I) L) [I|Com] FI E) I (interact L Com (u FI) E).

5 store (interact (unary (storeI I) L) Com I E) F I (interact L Com (u I) E) :-

6 output std_out "Adding to context formula ",

7 term_to_string F S1 ,

8 output std_out S1,

9 output std_out "\n".

10 release (interact (unary releaseI L) Com FI E) (interact L Com (u FI) E).

11 initial (interact (axiom (initialI I)) [] _ _) I.

12 orNeg (interact (unary (orNegI FI) L) Com FI E) F (interact L Com (u FI) E).

13 andNeg (interact (binary (andNegI FI) L1 L2) [branch LC RC] FI E) F

14 (interact L1 LC (l FI) E) (interact L2 RC (r FI) E).

15 all (interact (unary (allI FI) L) Com FI E) F

16 (Eigen\ (interact L) Com (u FI) [eigen FI Eigen| E]) :-

17 output std_out "Using eigen variable ",

18 term_to_string FI S1,

19 output std_out S1,

20 output std_out "\n".

21 some (interact (unary (someI no_index) leaf) [] _ _) _ _ :- !,

22 output std_out "You have to choose the term to use for instantiation",

23 output std_out "\n", fail.

24 some (interact (unary (someI FI) L) [T|Com] FI E) T’ (interact L Com (u FI) E) :-

25 apply_vars T E T’.

26 apply_vars T [] T.

27 apply_vars T [eigen _ X|L] T’ :-

28 apply_vars (T X) L T’.

Figure 5: λProlog implementation of basic interaction with the user

The indexing mechanism I use is based on trees and assigns each unitary child of a parent I the index
(u I) while binary children are assigned the indices (l I) and (r I) respectively. The index of the
theorem is e. For example, if our theorem is A &-& B, meaning a negative conjunction, then this formula
is assigned the index e while A is assigned (if stored in the context) the index (l e) and B is assigned the
index (r e).

I note here that the presented implementation is a very primitive one with the most basic user feedback.
In particular, when conjunctions and branching are involved, it becomes very difficult to follow the
different branches and their respective contexts and fresh variables. I do supply a mechanism for handling
conjunctions (via the branch command), but a more user friendly implementation would need to display
this information in a better way, for example, by the use of graphical trees.

4.3 An example

In this section I demonstrate the execution of the prover on the Drinker’s paradox. In order to use the
assistant, the user needs to call the prover with the theorem and an empty command list.

$>./run.sh ’some x\ (n (drink x)) !-! (all y\ (p (drink y)))’ ’[]’

Since we start in a negative phase and the theorem is positive, the theorem is stored with index e and
we are prompted to pick up an index of a formula to decide on. We choose e. We are now asked to pick
up a term for instantiation. A proof of this theorem requires a user to pick an arbitrary witness at this
phase and we indeed pick up the witness a. We are again asked for an index to decide on but this time we
see that the prover has already executed several steps, including the negative (and automatic) disjunction
and all steps and that in addition to several new formulas in context, we also have a new fresh variable.
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1 decide_ke (interact (unary (decideI I) L) [auto|Com] FI E) I

2 (interact L Com (u FI) E) :- !.

Figure 6: λProlog implementation of the auto tactic

We decide again on the theorem with index e in order to instantiate it with the correct term now. We
follow this with supplying the term (x\ x). This term is just the fresh variable introduced in the earlier
universal step.

Running the program again, we are presented with a selection of context formulas to decide on. We
can see now that the context contains the positive and negative versions of the atom drink x0 and we
choose the index of the positive version, u (u (u (u (u (u (u e)))))).

The prover finishes and displays the whole proof which was generated. The last execution is therefore,
$>./run.sh ’some x\ (n (drink x)) !-! (all y\ (p (drink y)))’

’[e,a,e,(x\x), u (u (u (u (u (u (u e))))))] ’

4.4 Creating and using tactics

Supporting interactive proof search still falls short from the needs of most users. Optimally, a proof
assistant would require the help of the user only for the most complex problems and will be able to deal
with simpler ones by itself. In the previous example, we had to search for the index to decide on. But,
there are finitely many options only. Can’t we let the prover try all options by itself?

In order to support a tactics language, I extend the program with an additional tactics file. This file
will contain additional implementations for the control predicates. The λProlog interpreter will choose
the right implementation according to whether the predicate is called with a tactic command or with a
command to decide on an index of a formula or a witness term. Fig. 6 presents the additional predicate we
need to add in order to support an auto tactic which attempts to decide on all possible context formulas.

Using this tactic, the commands required in order to prove the theorem from the example is
$>./run.sh ’some x\ (n (drink x)) !-! (all y\ (p (drink y)))’ ’[auto ,a,auto ,(x\x),auto]’

It should be noted though, that the simple auto command introduced in this section might fail to
work in cases we encounter an infinite loop on a wrong guess. A more advanced mechanism with a depth
bound should be used in this case.

5 Conclusion and further work

The aim of this paper was to describe the process of implementing a minimal proof assistant based on
focusing and λProlog. The steps described are the following: given a focused sequent calculus, implement
in λProlog its inference rules, a set of control predicates in order to obtain interaction and possibly, a
set of tactics. The program can now be executed by running ELPI with a theorem and the required user
commands. The implementation described is intended as a ”show case” only. I present it in order to show
an alternative approach for interfacing with a proof assistant. The interface which is implemented in this
paper is too primitive to be useful in most cases.

The main target audience of this approach are users who find the existing professional proof assistants
too strong and complex for their needs or users which work with proof calculi which are not easily
embedded into any of the existing proof assistants. The next step is to try and apply this approach to
formal domains where automated and interactive tools are scarce, such as in modal logic.
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There are several other possible extensions to this work. An important extension is the creation of
a generic graphical user interface, which can parse and display λProlog proofs and proof information.
Another is the creation of a library of basic tactics which can be applied to a variety of logics.
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